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ABSTRACT

Engineering control problems include several types of nonlinear dynamics.

This paper presents the stabilization design problem for the Single Input
Single Output (SISO) nonlinear control system. A case study, which
includes the stabilization problem of shunt-excited DC motor, is
considered in this work by establishing the basic form of the nonlinear
control law and applying four types of control techniques including
diffeomorphisme and feedback linearization. The proposed controllers are
two feedback controllers, zero dynamics controller and Lyapunov
controller. Different initial conditions for each proposed controller are
numerically simulated using MATLAB®\Simulink®. Consequently, the
energy of each control signal and the corresponding energy of the state are
computed and compared to evaluate each considered control technique. As
a result, the zero dynamics controller has the advantage of being the
simplest controller design and generate the minimum controller energy
consumption relative to other proposed controllers. Moreover, the
Lyapunov controller method leads to satisfactory behavior in means of
minimum transient response of the dynamical system states comparing to

other propose controllers.
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INTRODUCTION

In this paper Shunt DC motor with an output function h(x) is
adopted as a model of the study. The main theorem of this paper
provides the nonlinear normal form for the shunt DC motor.
Some numerical simulations are presented to demonstrate the
behavior for the closed-loop system. In addition, some
numerical results are computed to show the performance of the

system with different controllers.
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In [1], the parameter of a conventional PID controller was
achieved by using the Ziegler—Nichols method. In [2], a PID
controller with optimal parameters was obtained by using a
novel algorithm called gravitational search algorithm. In [3], a
PID controller with optimal characteristics was proposed to
control the speed shunt DC motor by using simulated annealing.
Other types of controllers, such as adaptive neuro-fuzzy [4], B-
spline neural network-based adaptive [5], B-spline neural
network [6], and Nonlinear Autoregressive Moving Average
(NARMA) level-2 [7] controllers, were proposed in previous
works. Several types of nonlinear controllers for nonlinear
systems were also suggested. Examples of these methods
include a fast integral terminal sliding mode control method [8],
a neural-network-based adaptive gain scheduling back-stepping
sliding mode control [9], generalization of the pointwise min-
norm controller [10], and fuzzy logic controller [11], [12].

In this paper, we mainly depend on feedback linearization
method some basic notions such as the gradient, Lie derivative,
Lie bracket and relative degree can be found in [14]-[16] to
develope the theortical part for the porposed controllers. Using
these concepts we will state and prove our main theorem and its
corresponding corrolaries where each corollary represent a
different controller, finally we will compaire the performance
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of the control system under those controllers by figures and
quadratic performance index function /. Comparative beween
different controllers gives us the opportunity to have a deep look
at the performance of the system with each controller.

The paper is organized as follows: in Section two a
mathematical model of Shunt-Excited DC Motor has been
constructed. In Section three the design of different types of
control signals based on different techniques presented in many
corollaries. The numerical simulations of different initial
conditions of the shunt DC motor model and their controllers
are presented in section four supported by concluding remarks.

Section five is the conclusions of the study.

SYSTEM MODELING

In this paper, to present the statement of the problem
consider the shunt-excited DC motor model [7] and [13]

_alzl - a222Z3 a3
zZ = —A4Z; + [a5] u
_a623 + a72122 0

(1)

= 23’
where z = [ ] Is the state vector, and the parameters a; €

-,7 are defined in Table 1.
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TABLE 1. Model
parameters

Parameter Value

a, 50
a, 100
as 83.3
ay 2
as 0.01
ag 0.01
a; 1.2
The linearization of the system (1) is as follows:
—a,q 0 0 Z1 as
zZ = [ 0 —0Qy 0 ] Za| + (15] u.
0 0 —agllzs 0

The system in the nonlinear form of the system will be
stabilized in this work.
THE PROPOSED CONTROLLERS
This subsection contain the most important part of the work,
which represents the theorems related to the porposed
controllers, theorem (1), followed by three corrolaries and a
proposition each one gives us a different controller which able
us to stabilize the system in different approach. The following
theorem and related coroleries are stated and proved to be our
main work to design different types of controller.
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Theorem (1):

Recall system (1)
Zq

Zz] IS the state vector, and the parameters a; €
Z3
R,vi=1,--,7 are defined in Table 1.

If a scalar function is available, then w(z) satisfies the
following conditions:

dw(z) dw(z)

A 2, * Zza—zz
()

Vw(z)-g(z) =0.
3)

Then, the nonlinear controller of the original system is
defined as follows:

2 2
v—(a2zz-a;(a1+a,+ag)z12,- a,a,z%23)

where z =

u =

(4)

Proof:

Given that the output function h(z) = z3, if the derivative of
y W.r.t. time is taken as

y = Leh(X) + Lygh(X)u

because L h(X) = 0, then

y = Leh(X) = 23 = —aez3 + a;2, ;.

()

Considering that the input armature voltage u = v, does not
appear in (5), then the derivative is repeated to obtain the
following:

¥ = L:h(X) + LyLeh(X) - u

(asa;z1+ aza;z;)

(asa;z; + aza;z;)u
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=7 ,
(6)
where L,Lsh(X) # 0.
If the definition of the nonlinear diffeomorphism T(z) = ¢

y 1
T = ( y ) = <€2>,
w(2) ¢3

(7)

then one should define the scalar function w(z). T must
satisfy the diffeomorphism condition such that the Jacobian of
the vector T is linearly independent because w(z) should be

represented in terms of z. Thus, |VT| # 0. This finding implies

the following:
0 0 1
a722 a7Z1 _a6 — ( aw(z) — 6(1)(2))
dw(z) Odw(z) Jdw(2) 7\"2 0z, 1 0z,
621 622 623

# 0 ...by condition. (2)

Meanwhile, the time derivative of w(z) is

dz) _ Vow - z
dt

=Vowf(z) + Vwg(z)u.

By condition (3),

w = Vof(z).
(8)

The last condition generates a partial differential equation.
Checking the condition presented below is easy.

w(z) = asz, — azz,
(9)

is a solution of (8) and serves (7) as a diffeomorphism, where

$1 Z3
<§”2> = (—a6z3 + a7zlzz>
& A5z — A3Z;
(10)
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With the inverse transformation z = T~1(¢) defined as

I/ﬁfﬁJ(“s%)& (o) + (1)53+(§73)2\I
(\ll)zf3+\/(aa7)fl (;a)fz &+ /

the nonlinear transforms the original system (1) into the
following form:

Sé1 $2

éz - a;+a, v ’

5'3 _( )53 + N(&aq, -+, ay)
(12)

where N(&;aq, -+, a,) is purely nonlinear term based on &
and the parameters. Equation (6) provides the relationship
between u and v defined as:

2 2
U= v—(a623—a7(a1+a4+a6)2122—a2a7ZZZ3)
(asazz1+ aza;zz) ’

and this completes the proof. m

The signal v in Equation (4) must be defined to design a
control signal u for the original system. Therefore, some
corollaries of theorem (1), which will completely design the
signal u, are introduced. Moreover, an additional controller

based on Lyapunov function will be designed.
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Corollary (1) (Feedback Linearization controller 1
(FLC1)): Under the hypothesis theorem (1), system (1) could

have the control law

_ (a6k2—k1—a%)23 +a7(a1+a4+a6—k2)2122+ a2a722223

1
(13)
such that k, and k,, satisfies the condition

0<k < ("2—2)2

(14)

Proof.

Owing to the almost linear [17] system (12), then the
approximate linearization of &; is defined as follows:

$3=— (al;r%) $3 s
(15)

where a, and a, are both positive. Thus, the third branch in
Equation (15) is stable and can be defined as follows:

v=-K-¢ ,
(16)

where K is the gain vector K = [k, k, 0], and the other
branches in (12) form a 2-dim Bronovsky form

¢ ¢
()= 0-()+ O
The feedback form using (16) becomes
(6)-C 2@
£, —ky —ky) \&3)

Considering that the matrix (_2 _11{ ) has a negative real
1 2

part by condition (14), then system (12) is stable; thus, system
(1) is. m

(asaz;z,+ aza;z;)
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Corollary (2) (Zero dynamics controller (ZDC)): Under

the hypothesis theorem (1), system (1) could have the controller

—a2zz+a;(a,+a,+0ag)Z1 22+ a20,2525

W2 = (asa;z1+ aza;z;)
(17)
Proof.
The output function can be defined as
h(zy) =0 )
(18)
z1(0)
where z, = | z,(0)
z3(0)
Then,
y=v=0
(19)

Substituting Equation (19) in (4) implies (17). m

Remark on corollary (2):

The output in Equation (18) is chosen because the voltage
V(1) is maintained at the voltage reference VREF when the
dynamical system started. Therefore, one can choose the output
function as

y(t) = h(z(t)) =V({t) — Vggr =0 ,Vt > 0.

Initially, the satisfaction of the previous equation in practice
is unknown. However, the assumption that the condition
required to stabilize the output is also necessary to generate a
small as possible quadratic performance index functional J is

reasonable. This assumption provides two advantages: the

oYA
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dynamical system is asymptotically stable, and the system
output has optimal control characteristics.

Corollary (3) (Feedback Linearization controller 3
(FLC2)): Using the feedback linearization concept, the

controller can be defined as follows:

—A121-2,z,—(A3+a2)zz+as (a1 +as+ae)z 22+ aza,z523

Uz =

(asaz)zi+ (azaz)z;
(20)

for system (1).

Proof.

The essential concept of FL is to achieve a linear relationship
between the suggested input v and the output y [18]-[20] by
respectively recalling Equations (5) and (6):

Y = Z3 = —QgZ3 + Q72125

and
V = a2Z3- Q721 2y~ Q40721 Zy— A1 (721 Zy— Ay(7Z5Z3 +
(asa,z, + aza,;zy)u.

Using a PID controller, this relationship can be expressed as
V=v=—02 — 1,7, — A325.

(21)
Substituting Equation (21) in (4) yields (20). m

Proposition (1) (Lyapunov controller (LC)) : Recall

system (1)
—QA1Z1 — ApZy7Z3 as
zZ= —QyuZy + [a5] u
_a6Z3 + a7Z122 0
y = Z3’

Z1
where z = [22] Is the state vector, and the parameters a; €
Z3

R,vVi=1,---,7 are defined in Table 1.

AR
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If the control signal
—k12{—kpz5—k3z5+(az—a7)z12,23

U4, =
(22)
then function V(z) = %ZT - Z defines a Lyapunov function

for system (1)
Proof:
as

V(z)=-2T-2Z

aszzq +a522

= %(212 + z2 + z2).
(23)
If the derivative of V(z) w.r.t. time is taken, the following is
obtained:
V(2) = 2121 + Zy2, + Z324
V(2) = z,(—a.2; — ay2,23 + agu) + z,(—a,z, + asu)
+ z3(—a¢z3 + a;7,2;)

V(z) = —a1212 - a4222 - a6Z32 + (a; — az)z12,23 +
(asz; + +aszy)u. (24)
Ay—Q7)Z12522—k122—k,22—k222 .
Ifu=(2 7)Z1Z2Z3—K127—Kp23 33|sset,
aszq +a5ZZ

then (24) becomes

V(z) = —(a; + ky)zf — (as + k)25 — (ag + k3)zi <O0.
(25)

Therefore, the controller (22) stabilizes the system in terms

of Lyapunov function.

NUMERICAL SIMLUATION RESULTS
This study aims to analyze the shunt DC motor system as a
nonlinear dynamical control system. The main theorem in the

paper, which establishes the basic form of the nonlinear control

oY .
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law, is then presented and proven in subsection 3.1. Then a
numerical simulations would be given in 3.2. to illustrate the
performance well,

All the numerical simulations are achieved using
MATLAB®\Simulink® 2018b. in figure 1, the block diagram
of the shunt excieted DC motor is presented. Moreover, the
block diagram of the proposed controllers is illustrated in figure
2.

FIGURE 1. The block diagram of the shunt excieted DC motor

oY)
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FIGURE 2. The block diagram of the proposed controllers

The following are the numerical simulations that illustrate the
behavior of the uncontrolled (u = 0) (Figure 3) and the
controlled shunt DC motor system by obtaining the parameters
in Table 1 with a set of the following initial conditions: z, (0) =
0.05, z,(0) = 0.05, and z5(0) = 50; z,(0) = 0.1, z,(0) =
0.1, and z3(0) = 100; and z,(0) =0.2 , z,(0) = 0.2, and
z5(0) = 150. The plot of z;-, z,-, and z3-state versus time is
computed based on the controllers in Equations (13), (17), (20),
and (22) and shown in Figures 4, 5, 6, and 7, respectively.
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FIGURE 3. Response curves to the uncontrolled shunt DC motor system
(u=0)

(@) z,vs. time, (b) z, vs. time, and (C) z5 vs. time
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(d)
FIGURE 4. Response curves to the shunt DC motor system with FLC1
(uy)

(@) z,vs. time, (b) z, vs. time, (C) z5 vs. time, and (d) u, vs. time
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FIGURE 5. Response curves to the shunt DC motor system with ZDC

(uz)
(@) zyvs. time, (b) z, vs. time, (c) z; vs. time, and (d) u, vs. time
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FIGURE 6. Response curves to the shunt DC motor system with FLC2
(u3)

(@) zyvs. time, (b) z, vs. time, (C) z; vs. time, and (d) us vs. time
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10 i i
0

5 10 15 20 25 30
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(d)
FIGURE 7. Response curves to the shunt DC motor system
with LC (u,)
(@) z,vs. time, (b) z, vs. time, (C) z; vs. time, and (d) u, vs.
time

Remark: The zero initial condition may show a disturbance-
like behavior in z; -state due to the existence of near-zero values
in the denominator. Figure 7 shows that the controllers dealt
well with this phenomenon and regulated the state before 10 s

for any given initial condition seconds.

TABLE 2. Results of the numerical simulations

u; ful?dt jzidt jz%dt Jz%dt ]
0 0 0 0
u=20 0.0000 95.08 0.002 494291.5 494386.64
75 5 588 87
Uy 42.198 7.220 0.004 498328.2 498377.66
6 3 26 408 40
U, 19.410 70.13 0.003 495909.3 495998.92
2 68 2 775 77

A
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Uz 26.593 55.77 0.003 496569.3 496651.74

0 77 3) 750 92
Uy 68.799 0.007 0.004 499920.3 499989.14
4 77 9 326 47

Energy of each control signal and the corresponding energy of
the state variables with the quadratic performance index
J=Ju"u+27-Zdt.

The ZDC u, produces the minimum controller energy
consumption relative to other proposed controllers u; , us; and
u, . Moreover, it has the benefit of being the simplest controller
design. However, the LC approach has a trial-and-error flavor
but may actually lead to satisfactory behavior as presented in
this research. This behavior is reflected on the value of z;
transient response of the LC controller with respect to other
propose controllers.

Remark. All values in Table 2 are computed using the
numerical integration method and approximated to four decimal
places.

CONCLUSION

Numerous forms of dynamics with nonlinearities are
established in industrial control problems. The stabilization
problem of shunt-excited DC motor as a SISO nonlinear control
system is considered by establishing the control law in the
nonlinear form with four types of control techniques, including
diffeomorphism and feedback linearization. Consequently,
different situations are numerically simulated with a set of

initial conditions, and the energy of each signal of the state is

ot
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computed. In the second control technique, the third state,
which represents the speed of the DC motor, is reduced to an
exponentially stable state and need not be included in the linear
control law. This condition reduces the energy of the control
law. By contrast, the fourth control technique, a Lyapunov
controller, is considered by all the states, including the control
law and the absence of a reduction in the model. This condition

leads to high energy in the control law.
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