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Abstract

In recent years, derivatives and integrals with fractional order and the structure of
conventional proportional-integral-derivative (PID) controllers have been used to construct
fractional-order PID controllers for improving the performance of controlled systems. This
study focuses on reducing the overshoot for second-order systems with small damping ratio or
underdamped systems by using a fractional-order proportional-derivative controller. The
proposed design method is direct given the use of a simple formula for selecting a single
parameter. A case study based on control the transmitted power of wireless communication
network (WCN) to solve the problem, which caused by the large number of data transmissions
in wireless network by using construct fractional-order PID controllers to improving the
performance of controlled systems. This study focuses on reducing consume power by reducing

the overshoot for second-order systems with small damping ratio or underdamped systems.

Keywords: Second-order dynamic systems; wireless communication network; proportional-

derivative controller; fractional-order control.
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1. Introduction

Many practical dynamics in engineering, such as robot, crane, vibration controls, and
power-system electronics, are expressed as second-order systems [1]-[4]. Such
systems in their applications may suffer from very high peak values in their measured
response curve relative to the required response curve. This situation may lead to the
collapse of these systems. Therefore, minimization of the maximum overshoot is
required to control such systems optimally [2]. Undesirable vibrations in these systems
should also be attenuated in less time.

Proportional-integral-derivative (PID) controllers are the most widely used
controllers in control engineering because of their simple structure and limited number
of parameters with numerous tuning methods. A PID controller is developed using the
Ziegler—Nichols method, wherein the controller parameters are derived from the
controlled model while the maximum overshoot is maximized [5]. Employing
fractional-order derivatives and integrals leads to a new type of controller called
fractional-Order PID (FO-PID) controller.

The FO-PID controller has been receiving interest in recent years as a result of its
robust performance [6]. Refs [7], [8] reveal the relationship between the maximum
overshoot and the order of differentiation, which motivates this work to solve the

parameterization issues of the controller.
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2. Literature review and problem statement

Four main fractional-order techniques are considered in literature, namely, tilted
proportional and integral (TID), non-integer-order robust control, FO-PID, and
fractional lead-lag controllers. The TID controller shares a similar structure with a
standard PID controller but replaces the proportional unit with a fractional-order
transfer function [9]. The non-integer-order robust control or CRONE, which stands
for “CommandeRobusted'Ordre Non Entier” in French, 1s a preferred control
approach-based frequency domain. CRONE established three generations of
approaches with many applications [10]. The FO-PID controller is a well-designed
and effective fractional-order alteration of classical PID controllers. This controller
proposes increased diversity of parameters for the controller. Finally, the integer
order of the lead-lag controller is extended by using fractional order [10].

The parameters of an FO proportional derivative (PD) controller can be tuned with
genetic algorithm [11], [12], artificial bee colony algorithm [13], particle swarm
optimization technique [14], [15], or Nelder-Mead simplex method [16]. The
downside of these techniques is the lack of guarantee of optimal results, which may
utilize a large amount of processor resources.

The transmitting signals in wireless network systems can detect and process the
information in real-time environments, thise can be causes consume power because
the effect of many parameters[17]. Wireless networks have a wide range of
applications such as, remote areas, cell phone, wireless local area, satellite
communication, personal communication, wireless sensor, and microwave networks
etc[2]. The power control technology of the wireless network is to reduce the
consume power as much as possible without sacrificing the performance of the
system, thereby reducing the energy consumption of the improving the survival in
real-time of the network and the energy efficiency of the system[18]. Power
algorithms in wireless system are considered as making control adjustable. using
negative feedback control from receiver to transmitter to get constant power
level[19].
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3. The aim and objectives of the study

The proposed FO-PD controller with three design parameters is recommended to
improve the time response specifications of the conventional PD controller with two
design parameters. The proposed controller has been given attention for the same
conditions. The simple and direct design procedure considers an extra parameter for
the FO-PD controller. The objective of this procedure is to minimize the maximum
overshoot. A case study is used to validate the requirements illustrated in this work.

The paper is organized as follows. Section 2 presents the concerned second-order
system, description of the FO-PD controller, and theoretical background for the
processed method. Section 3 explains the design of the FO-PD controller. Section 4
discusses the case study, which is numerically simulated to prove the efficiency of

the proposed design method. Finally, Section 5 presents the concluding remarks.

4. Materials and methods
4.1. Considered Second-order System

The general form of linear systems with second order is as follows [20]:

P(s) = —2n__ (1)

s(s+2¢wy)’
where w,, is the natural frequency, and ¢ is the damping ratio. The characteristic
equation of the closed loop with Eq. (1) is the transfer function of the controlled
plant for unity feedback and is given as
s? + 2{w, s + w2, (2)
The roots of the characteristic equation given in Eq. (2) are
~{wn £ 0 /72— 1. (3)
The second-order system has an underdamped response if the damping ratio is

less than 1. In this case, the roots are complex conjugate and described as follows

[2]:
—0 i] Wy, (4)
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where o0 = (w,, and wy = a)n\/l——cz Is the underdamped natural frequency.

The transfer function of the open-loop G(s) is constructed by cascading the
transfer function of the plant P(s) given in Eq. (1) and the transfer function of the
controllers C(s). This arrangement is formulated as

G(s)=C(s) P(s). ()
Fig. 1 shows a simple feedback loop of the second-order system given in Eq. (1),
which is composed of a plant and a controller. r represents the setpoint, e is the

control error, u is the control input, and y is the control output [21].

________________________________________

Fig. 1. Plant with a controller for the second-order closed loop [21]
For the underdamped system (¢ < 1), the step response of the uncontrolled

system is

1 —lwnt

y(t) =1- Jl——fzen COS(a)dt - ¢) (6)

Then, the exact formula for the maximum overshoot value of y(t) is described by

the following equation:
__mg

MP =e \/; (7)

Moreover, the approximate formula is as follows:

¢ (8)
MP=1-=,  for0<{<06.

4.2. Fractional-order Control Systems and Overshooting Step Responses
The differintegral operator to an arbitrary order is the generalized integer-order

differentiation and integration [10]:
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a

L Rea>0
dt®
Df =4 1 Rea=0 , €©)
fal(dr)‘“ Rea <0
where a represents the differintegration order and the a initial conditions are
constant.

The differintegral is expressed using the Riemann—Liouville form as [10]

DEf() = o [ LDy (10)

F'(n-a)dt"“a (t-t)a—n+1 ="'

where I'(+) is the Gamma function. Eq. (6) is considered with an assumption(n —
1<a<n).

For the intention of presenting the influence of the FO-PD controller on governing
the overshoot of the second-order system given in Eq. (1), the following transfer
function of the FO-PD is considered [22]:

C1(s) = Ky + Kgq8%, (11)

where u € (1,2)[23].

The classical PD controller, which is presented for the sake of comparison, is
formulated as

C,(s) = Kpy + Kyzs. (12)

4.3 Design of the FO-PD Controller

Consider a second-order system as given in Eq. (1) withw, =5 Rad/s. This
system is controlled via an FO-PD controller [as given in Eqg. (11)] with the
controller parameters k,; = 2 and kg4, = 0.25. The step response is evaluated by
applying a unit step reference signal to the input of the considered control system.
The maximum overshoot is evaluated for different values of ¢ and u in the ranges of
[0,1] and [1, 5], respectively. The result of the previous consideration is illustrated

in Fig. 2.
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Fig. 2. Maximum percentage overshoot in terms of ¢ and u

MATLAB®’s surface fitting tool (Fig. 3) is applied to create a surface and
determine the best fit to the data points of Fig. 2. This tool is utilized to obtain the
surface function of the maximum percentage overshoot in ¢ and u for the considered
control system. The resulting function of the maximum percentage overshoot is
described as the continuous functions of ¢ and u and is described as follows:

MP(%) = coo + Cioht + Co1{ + Caop® + c11ft + Cop{” +

Co1 1 + c1ud? + co3G°.

The values of the parameters in Eq. (13) are listed in Table 1.

(13)

4\ Surface Fitting Taol - o X
File Fit View Tools Desktop Window Help e x
v obs [0 | 2 | | BODEF0

untitled fit1 % 7

Fit name: |untitied fit 1 Palynomial 1 ~ M Auto fit
Xinput:  |x1 v Degrees: x: | 2 vig |3 > Fie
Yinput: |yl v Robust: aff v Stap
Zoutput: | mpp v [ Center and scale

Weights: |fnone) v Fit Options..

I it it 1

®  mppvs.xl, vl

Fit name Dita Fit type SsE Rsquare  DFE AdRsq  RMSE # Coeff Validation ... Validation .. Validation
[ untitled f... mpp vs. x1, y1|poly23 |4.2485 |0.9973 51 |0.9968 |0.2886 | El

Fig. 3. MATLAB® surface fitting tool
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Table 1. Parameters of the obtained surface function given in Eq. (13)

Coefficient Value
Coo 186.6
C10 -226.2
Co1 -338
C20 73.17
C11 317.5
Co2 167.9
Co1 -75.56
C12 -80.88
Co3 -24.66

As a verification step, Eq. (13) is plotted for the same value ranges of ¢ and p,

and the result is illustrated in Fig. 4. The data points of Fig.s 2 and 4 are compared,

and the result is shown in Fig. 5. As illustrated in Fig. 5, the fitting error is about

1%, which allows proceeding to the next step.

Fig. 4. Verified maximum percentage overshoot surface
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Fig. 5. Error surface results from comparing the original and the verification for
the maximum percentage of overshoot surfaces

In Eq. (13), the damping ratio ¢ is considered as a design specification and the

fractional order is regarded as a design parameter u. As a result, the following

quadratic formula is obtained:

kyu? + kpu+ kg — MP(%) = 0, (14)
where the values of the parameters k,, k,, and k, are expressed as
Ko = Coo + €018 + C028% + Co3§? (15)

ki = cio+ +c110 +¢q347 (16)

ky = c30 + €210 17)

Finally, the quadratic formula given in Eq. (14) is solved for the design parameter
U, design specification ¢, and maximum percentage overshoot MP (%). The formula
is described as

—k1$\/k%—4(k0—MP)k2

j= (18)

2k,

5. Results

Considered Second-order For Wireless Communication Systemsas[24]:

b
G(s) = Srers
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—a+Vaz—4p - 2
goratvel-4b_ LV () -
a
N
o, =B

s = <Gon £ onF—1

Then equation is become:
G(s) =

The present second order transfer function depending on frequency which

Sz+2(cons+con

effect on consumed power to produce Gp(s) which is represent wireless
communication system response. X(s) + E(s)G(s)Gp(s)

As a case study, consider a second-order system as given in Eq. (1) with w,, =
5Rad/s and¢ = 0.1. This system is controlled via the PD and FO-PD controllers
provided by Egs. (12) and (11), respectively, with controller parameters k,; =
ky, =2 and kg = k4, = 0.25. The suitable value of the design parameter u is
required to complete the design of the FO-PD controller, given that the value of the
maximum percentage overshoot MP(%) = 12 is based on Eq. (18).

First, the values of parameters k,, k,, and k, are evaluated using the value of
the damping ratio ¢ and the constants listed in Table 1. Next, the value of the design
parameter \mu is evaluated on the basis of Eq. (18), which is ¢ = 1.28. Finally, the
time response for the conventional PD and FO-PD controllers are established via
MATLAB®.

—FD
T FO-PD 1 =1.28 ||

________________________________________

______________________________________________________________________

t [sec]

Fig. 6. Step response of the second-order system for { = 0.5
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Fig. 6 shows that the time-response specifications of the FO-PD controller are
better than that of the PD controller in terms of time specifications and maximum
percentage overshoot, which is the minimum value, as listed in Table 2. The effect
of changing the value of the natural frequency w,, is shown in Figures 7 and 8, with
the percentage maximum overshoots listed in Tables 2 and 3, respectively.

Table 2. Evaluated and maximum percentage overshoot

Controller | MP (%)

PD 22.918
FO-PD 9.953
: : ._PD |
S S e ====FO-PD =128 |
s 4 s

t [sec]

Fig. 7. Step response of the second-order system for { = 0.5 and w,, = 4.5

Table 3. Evaluated and maximum percentage of overshoot (w,, = 4.5)

Controller | MP (%)
PD 27.832
FO-PD 14.322
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Fig. 8. Step response of the second-order system for { = 0.5 and w,, = 5.5

—FD
T FO-PD .=1.28 ]

________________________________________

_____________________________________________________________________

t [sec]

Table 4. Evaluated and maximum percentage of overshoot (w,, = 5.5)
Controller | MP (%)

PD 25.221
FO-PD 11.902

6. Discussion of results

The FO-PD controller expands and generalizes the conventional PD controller
from point to plane. This development enhances the time response by reducing the
maximum overshoot and increasing the robustness against parameter variation, as
shown in Figures 6 to 8. This advantage results in improved accuracy for control in
industrial processes.
7. Conclusion

A simplified second-order model with an FO-PD controller is considered for the
wireless networks power control for showing adjust the transmitted power effect on
power consume in wireless communication system to solving problems when the
service flow routing is determined and an algorithm performance is designed based
on the fractional-order control method. The FO-PD controller is represented by three
parameters. Two parameters are the same as those of the conventional PD controller.
The key point in this research is to simplify the process of obtaining the extra
parameter of the controller by respecting the maximum overshoot as a design
parameter. FO-PD has one additional parameter that offers further degrees of
freedom to the dynamic properties of the controlled model. A comparison of the PD
and FO-PD controllers through numerical simulations illustrated that the latter can

reduce the maximum percentage overshoot.
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